The Use of Time Varying Eigenvalues to Investigate Nonlinear System Behaviour

Anthony S White, Michael Censlive

Abstract


This paper uses nonlinear eigenvalues to examine the behaviour of three well studied nonlinear systems that exhibit chaos.  The nonlinear eigenvalue analysis method has been widely used in System Dynamics to study the relative dominance of feedback loops.  The method used here is to compute nonlinear eigenvalues using a Taylor expansion about the equilibrium solutions with a Hessian matrix expansion to obtain nonlinear eigenvalues with state variables in the algebraic solution and then substitute state values computed via a Simulink model.  Examination of limit cycle and chaos are made for forced 2D systems such as the Duffing and Van der Pol equation and for a 3D system, the Lorenz equations. The eigenvalue variation with time shows a repeating root variation for limit cycles that is intermittently varied for the forced chaos conditions.  This behaviour is not the same for the Lorenz system. These results illustrate how the roots of a system can change when chaos is present.


Full Text:

PDF

References


THOMPSON J M T, STEWART H B: Nonlinear Dynamics and Chaos, Wiley, 2nd Edition, Chichester. 2002

POINCARÉ, H: Mémoire sur les courbes définies par les equations différentielles I-VI, Oevre I. Gauthier-Villars: Paris. 1880-1890.

POINCARÉ, H: Sur les équations dela dynamique et le probléme de trios corps. Acta Math.,1890, vol. 13,p 1-270.

LIAPUNOV, A.M: Probléme Général de la Stabilité du Mouvement, (Annals of Mathematical Studies, 17). Princeton NJ, Princeton University Press. 1949.

DRAZIN, P: Nonlinear Systems, Cambridge University Press. 1992

FORRESTER J: Industrial Dynamics, MIT press, Boston 1961.

FORRESTER N B: Eigenvalue analysis of dominant feedback loops, System Dynamics Conference, 1983 http://www.systemdynamics.org/conferences/1983/proceed/.../forre178.pdf accessed on 20/04/2012

KAMPMANN C E: Feedback Loop Gains and System Behavior, System Dynamics Conference, 1996.

http://www.systemdynamics.org/conferences/1996/.../kampm260.pdf accessed on 23/03/2012

SALEH M, DAVIDSEN P: An eigenvalue approach to feedback loop dominance analysis in nonlinear dynamic models, 18th International Systems Dynamics Conference. (2000)

http://www.systemdynamics.org/conferences/2000/PDFs/saleh225.pdf accessed on 20/04/2012

GÜNERALP B: Progress in Eigenvalue Elasticity Analysis as a coherent Loop Dominance Analysis tool, 23rd System Dynamics Conf., 2005 http://www.systemdynamics.org/conferences/2005/proceed/.../GUNER378.pdf accessed on 20/04/2012

ABDEL GAWAD A, ABDEL ALEEM B, SALEH M and DAVIDSEN P: Identifying Dominant Behaviour Patterns, Links and Loops Automated Eigenvalue Analysis of System Dynamics Models, 23rd System Dynamics Conf., 2005. http://www.systemdynamics.org/conferences/2005/.../ABDEL373.pdf accessed on 20/04/2012

SALEH M, OLIVA R, DAVIDSEN P and KAMPMANN C: Eigenvalue Analysis of System Dynamics models, 24th System Dynamics Conference. 2006.

KAMPMANN C E, OLIVA R: Loop eigenvalue elasticity: three case studies, System Dynamics Review, 2006, vol. 22, no.2), p.141-163.

GÜNERALP B: Towards coherent loop dominance analysis: progress in eigenvalue elasticity analysis, System Dynamics Review, 2006, vol.22, no.3, p.263-289.

Guckenheimer J. and Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag , 1983.

WOLFRAM MATHWORLD “Chaos” found at

http://mathworld.wolfram.com/Chaos.html

on 27/07/2015

WOLFRAM, S: A New kind of Science, Wolfram Media Inc, Champaign, USA, 2002.

VAN DER POL, B.: Forced oscillations in a circuit with non-linear resistance (reception with reactive triode), The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1927,Ser.7, no.3, p.65-80.

LORENZ, E.N.: Deterministic Nonperiodic Flow, J. Atmos. Sc. 1963, vol.20, p.130-141.

VAN DER POL, B.: A theory of the amplitude of free and forced triode vibrations, Radio Review, 1920, vol.1, p.701-710, p.754-762.

VAN DER POL, B.: On oscillation hysteresis in a triode generator with two degrees of freedom, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Ser.6, no.43, p.700-719, 1922.

VAN DER POL, B.: On "relaxation-oscillations", The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1926, vol. Ser.7, no.2, p.978-992.

VAN DER POL, B.: The nonlinear theory of electric oscillations, Proceedings of the Institute of Radio Engineers, 1934, vol.22, p.1051-1086.

APPLETON E. V. and VAN DER POL, B.: On the form of free triode vibrations, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1921, vol. Ser.6, p.42, 201-220.

APPLETON E. V. and VAN DER POL, B.: On a type of oscillation-hysteresis in a simple triode generator, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1922, vol. Ser.6, p.43, 177-193.

VAN DER POL, B., and van der Mark, J.: Frequency demultiplication, Nature, 1927, vol.120, p.363-364.

VAN DER POL, B. and VAN DER MARK, J.: The heartbeat considered as a relaxation oscillation, and an electrical model of the heart. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 1928, Ser.7, 6, p.763-775.

METTIN, R, PARLITZ, U, and Lauterborn, W: Bifurcation Structure of the Driven VanDer Pol Oscillator, Int. J Bifurcation and Chaos, 1993, vol.3, no.6, p.1529-1555.

WARMIŃSKI, J: Synchronisation effects and chaos in the van der Pol-Mathieu Oscillator, J Theoretical and Applied Mechanics, 2001, vol.39, no.4, p.861-883.

TSATSOS, M: Theoretical and Numerical Study of the Van der Pol Equation, Dissertation, University of Thessaloniki, Greece, 2006.

GUCKENHEIMER, J, HOFFMAN, K and WECKESSER, W.: The Forced van der Pol Equation 1: The slow flow and bifurcations, SIAM J. Appl. Dyn. Syst.2003, vol.2, no.1, p.1-35.

KYPRIANIDIS, I, PAPACHRISTOU, V, STOUBOULIS, I, and VOLOS, Ch: Dynamic of Coupled Chaotic Bonhoeffer-van der Pol Oscillators, WSEAS Trans on Systems, 2012, vol.11, no.9, p.516-526.

RAVISANKAR, L, RAVICHANDRAN, V and CHINNATHAMBI,V: Prediction of Horseshoe Chaos in Duffing-Van der Pol Oscillator driven by Fiffrenet Periodic Forces, Int. J of Engineering and Science, 2012, vol.1, no.5, p.17-25.

DUFFING, G: Erzwungene Schwingungen bei Veränderlicher Eigenfrequenz., F. Vieweg u. Sohn, Braunschweig, 1918.

MOON F.C. and HOLMES, P.J.: A magnetoelastic strange attractor, Journal of Sound and Vibration, 1979, vol.65, p.275-296.

OTT, E.: Chaos in Dynamical Systems (2nd edition), Cambridge University Press, 2002.

UEDA, Y.: Explosion of strange attractors exhibited by Duffing's equation, In Nonlinear Dynamics, R.H.G. Helleman (ed.), p.422-434, New York Academy of Science. 1980.

HOLMES P.J. and RAND D.A.: The bifurcations of Duffing's equation: An application of catastrophe theory, Journal of Sound and Vibration, 1976, vol.44, p.237-253.

HOLMES P. and RAND D.: Phase portraits and bifurcations of the non-linear oscillator

x ¨ +(α+γx 2 )x ˙ +βx+δx 3 =0 ,

International Journal of Non-linear Mechanics, 1980, vol.15, p.449-458.

HOLMES, P.: A nonlinear oscillator with a strange attractor, Philosophical Transactions of the Royal Society A, 1979, vol.292, p.419-448.

HOLMES C. and HOLMES, P.: Second order averaging and bifurcations to subharmonics in Duffing's equation, Journal of Sound and Vibration,1981, vol. 78, p.161-174.

HOLMES P. and WHITLEY, D.: On the attracting set for Duffing's equation, II. A geometrical model for moderate force and damping, Physica, 1983, vol.7D, p.111-123.

UEDA, Y.: Randomly transitional phenomena in the system governed by Duffing's equation, Journal of Statistical Physics,1979, vol.20, p.181-196.

KALMÁR-NAGY, T and BALACHANDRAN, B : Forced harmonic vibration of a Duffing oscillator with linear viscous damping, Chapter 5 The Duffing Equation: Nonlinear Oscillators and their Behaviour, Ed Kovacic and Brennan, Wiley, 2011.

BÉNARD, H Les tourbillons cellulaires dans une nappe liquide, Rev. Gén. Sciences Pure Appl., 1900, vol.11, p.1261 - 1271, vol.11, p.1309 -1328.

LORD RAYLEIGH: On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side, Phil. Mag., 1916, Ser.6, p.32: 529 - 546.

HILBORN, R. C.: Chaos and Nonlinear Dynamics, Oxford, Oxford University Press, 1994.

SALEH M, DAVIDSEN P: Extending eigenvalue analysis to nonlinear models via incorporating higher order terms of Taylor series expansion, 25th International Systems Dynamics Conference, 2007, http://www.systemdynamics.org/conferences/2007/.../SALEH425.pdf accessed on 20/04/2012

MOJTAHEDZADEH M, Anderson D, Richardson G: Using Digest to implement the pathway participation method for detecting influential system structure, System Dynamics Review, 2004, vol. 20, no.1, p.1-20.

GONCALVES P: Behavior modes, pathways and overall trajectories: eigenvector and eigenvalue analysis of dynamic systems, System Dynamics Review, 2009, vol.25, no.1, p.35-62.

WHITE, A.S.: Trajectory sensitivity of non-linear System

Dynamics models to parameter variations, Journal of

Simulation, 2013, vol.7, p.25-37.

SETO, W.W: Theory and Problems of Mechanical Vibrations, Schaums Outlines, New York, 1964


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.